Ultra-broadband electromagnetic MEMS vibration energy harvesting
نویسندگان
چکیده
منابع مشابه
Ultra-broadband electromagnetic MEMS vibration energy harvesting
This paper presents the design, fabrication and characterization of an electromagnetic MEMS energy harvester with ultra-broad operating bandwidth. The beam stretching induced nonlinear spring stiffness enables the resonance to extend from 65 Hz to 340 Hz and 400 Hz at accelerations of 0.5g and 1.0g, respectively. The ultra-wide bandwidth could benefit the harvester device for more efficient vib...
متن کاملBroadband Vibration Energy Harvesting Techniques
The continuous reduction in power consumption of wireless sensing electronics has led to immense research interests in vibration energy harvesting techniques for self-powered devices. Currently, most vibration-based energy harvesters are designed as linear resonators that only work efficiently with limited bandwidth near their resonant frequencies. Unfortunately, in the vast majority of practic...
متن کاملElectromagnetic energy harvesting from flow induced vibration
A new electromagnetic energy harvester for harnessing energy from flow induced vibration is developed. It converts flow energy into electrical energy by fluid flow and electromagnetic induction. A finite element model for estimation of the generated voltage of the energy harvester is developed. A prototype of the energy harvester is fabricated and tested. Experimental results show that an outpu...
متن کاملAn Electromagnetic MEMS Energy Harvester Array with Multiple Vibration Modes
This paper reports the design, micromachining and characterization of an array of electromagnetic energy harvesters (EHs) with multiple frequency peaks. The authors present the combination of three multi-modal spring-mass structures so as to realize at least nine resonant peaks within a single microelectromechanical systems (MEMS) chip. It is assembled with permanent magnet to show an electroma...
متن کاملA micro electromagnetic generator for vibration energy harvesting
Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes. This paper presents a small (component volume 0.1 cm3, practical volume 0.15 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data. The generator uses four magnets arranged on an etched c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2013
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/476/1/012049